Open Shading Language

Larry Gritz Clifford Stein

Chris Kulla Alejandro Conty

Sony Pictures Imageworks*

1 Introduction

Open Shading Language (OSL) was developed by Sony Pictures
Imageworks for use in its in-house renderer used for feature film
animation and visual effects. OSL’s specification and full imple-
mentation have been released as open source software. [Sony Pic-
tures Imageworks 2010]

OSL has syntax similar to C, as well as other shading languages.
However, it is specifically designed for advanced rendering algo-
rithms and has features such as radiance closures, BSDFs, and de-
ferred ray tracing as first-class concepts.

OSL shaders can be organized into networks, with named outputs of
nodes being connected to named inputs of other downstream nodes
within the network. These connections may be done dynamically
at render time, and do not affect compilation of individual shader
nodes. Furthermore, the individual nodes are evaluated lazily, only
when their outputs are “pulled” from the later nodes that depend on
them (shader writers may remain blissfully unaware of these details,
and write shaders as if everything is evaluated normally).

2 Radiance Closures

Traditionally, shaders compute just the surface color visible from
a particular direction. These are “black boxes” that a renderer can
do little with but execute to find this one value (for example, there
is no way to discover which directions are important to sample).
Furthermore, in other languages, the physical units of lights and
surfaces are often underspecified, making it very difficult to ensure
that shaders are behaving in a physically correct manner.

OSL’s surface and volume shaders compute an explicit symbolic
description, called a closure, of the way a surface or volume scat-
ters or emits light, in units of radiance. These radiance closures may
be evaluated in particular directions, sampled to find important di-
rections, or saved for later evaluation and re-evaluation. This new
approach is ideal for a physically-based renderer that supports ray
tracing and global illumination. There are different types of closure
primitives for BSDF, BSSRDF, emission, and volume scattering.
The integrator knows how to handle them properly and each closure
type may have different sets of methods internally. But shaders may
combine them, manipulate them uniformly, and behave as if they all
are simply returning an exitant radiance.

There are no “light loops” or explicitly traced rays in OSL shaders.
Effects that would ordinarily require explicit ray tracing, such as re-
flection and refraction, are simply part of the radiance closure and
look like any other BSDF. OSL does not have separate surface and
light shaders; lights are simply surfaces that are emissive, and all
lights are area lights. The radiance closures generalize both scat-
tering and emission. You also don’t need to explicitly set opacity
variables in the shader. Transparency is just another way for light to
interact with a surface, and is included in the main radiance closure
computed by a surface shader.

The radiance closures produced by shaders are passed to a part of
the renderer called an infegrator that evaluates the closures (and
lights) to determine which directions are important, and to compute
the exitant radiance in the viewing direction. Advantages of this

*email: {lg,cstein,ckulla,aconty } @imageworks.com

Copyright is held by the author / owner(s).
SIGGRAPH 2010, Los Angeles, California, July 25 — 29, 2010.
ISBN 978-1-4503-0210-4/10/0007

approach include that integration and sampling may be batched or
re-ordered to increase ray coherence; a “ray budget” can be allo-
cated to optimally sample the BSDF; the closures may be used for
multi-importance sampling, bidirectional ray tracing, or Metropo-
lis light transport; and the closures may be rapidly re-evaluated with
new lighting without having to re-run the shaders.

3 Key runtime technologies
AOVs are specified using “light path expressions”

Production users often output many images containing partial
lighting components such as specular, diffuse, reflection, individ-
ual lights, etc. In other languages, this is usually accomplished
by adding a plethora of “arbitrary output variables” (AOVs) the
shaders that collect these individual quantities.

OSL shaders need not be cluttered with any code or output variables
to accomplish this. Instead, there is a regular-expression-based no-
tation for describing which light paths should contribute to which
outputs. For example, “CD+L" isolates just the indirect diffuse il-
lumination, and “CS+D*L” isolates just reflections and refractions.
If you desire a new output, there is no need to modify the shaders at
all; you only need to tell the renderer the new light path expression.

No “uniform” and “varying” keywords in the language

In our OSL runtime implementation, shaders are evaluated in SIMD
fashion on many points at once, but there is no need to burden
shader writers with declaring which variables need to be uniform or
varying. In OSL, this is done both automatically and dynamically,
meaning that a variable can switch back and forth between uniform
and varying, on an instruction-by-instruction basis, depending on
what is assigned to it and the current conditional state.

Automatic differentiation for computed derivatives

OSL allows shaders to take derivatives of any computed quantity,
and to use arbitrary computations as texture coordinates and expect
correct filtering. In our runtime implementation of OSL, derivatives
are computed using automatic differentiation utilizing dual arith-
metic [Piponi 2004], computing partial differentials for the vari-
ables that lead to derivatives, without any intervention required by
the shader writer. This has advantages over finite difference meth-
ods: it does not require that shaded points be arranged in a rect-
angular grid (or have any particular connectivity — very important
for ray tracing), or require that any extra points be shaded. It also
means that it is safe to use derivatives inside conditional statements
and loops.

References

P1poONI, D. 2004. Automatic differentiation, c++ templates, and
photogrammetry. journal of graphics, gpu, and game tools 9, 4,
41-55.

SoNYy PICTURES IMAGEWORKS, 2010.
http://code.google.com/p/openshadinglanguage. Web site.



